
gocept.selenium
Release 3.0

Jun 30, 2022

Contents

1 Setting up the environment 3
1.1 Environment variables . 3
1.2 Jenkins integration . 4
1.3 Tips & Tricks . 5

2 Integration 7
2.1 WSGI . 7
2.2 Static files . 8
2.3 Zope3 / ZTK (zope.app.wsgi) . 8
2.4 Grok . 8
2.5 Zope 2 . 9
2.6 Zope 2 via WSGI . 9
2.7 Zope 2 / Plone with plone.testing . 9
2.8 Converting Selenese HTML files . 9

3 API reference 11
3.1 Selenese API . 11
3.2 Webdriver API . 11
3.3 Test helpers . 13

4 Development 17
4.1 Developing gocept.selenium . 17
4.2 Changelog . 17

i

ii

gocept.selenium, Release 3.0

gocept.selenium provides an API for Selenium that is suited for writing tests and integrates this with your test suite
for any WSGI, Plone or Grok application.

While the testing API could be used independently, the integration is done using test layers, which are a feature of
zope.testrunner.

Use gocept.pytestlayer to integrate it with pytest.

Contents:

Contents 1

https://goceptselenium.readthedocs.io/en/latest/?badge=latest
https://github.com/gocept/gocept.selenium/actions?query=workflow%3Atests
https://pypi.org/project/gocept.selenium/
https://pypi.org/project/gocept.selenium/
http://seleniumhq.org/
http://pypi.python.org/pypi/plone.testing#layers
http://pypi.python.org/pypi/zope.testrunner
https://bitbucket.org/gocept/gocept.pytestlayer
http://pytest.org

gocept.selenium, Release 3.0

2 Contents

CHAPTER 1

Setting up the environment

Download the Selenium Server JAR from seleniumhq.org and run:

$ java -jar /path/to/selenium-server-standalone-2.xx.xx.jar

This starts the server process that your tests will connect to to spawn and control the browser.

Choose the appropriate test layer (see Integration) and create a test case:

import gocept.selenium.wsgi
from mypackage import App

test_layer = gocept.selenium.wsgi.Layer(App())

class TestWSGITestCase(gocept.selenium.wsgi.TestCase):

layer = test_layer

def test_something(self):
self.selenium.open('http://%s/foo.html' % self.selenium.server)
self.selenium.assertBodyText('foo')

1.1 Environment variables

You can set some variables in the environment of your test runner to configure which selenium server gocept.selenium
connects to. Selenium Server defaults to localhost:4444, but you can also connect to a selenium grid in your organiza-
tion by using the following environment variables:

GOCEPT_SELENIUM_SERVER_HOST=selenium.mycompany.com
GOCEPT_SELENIUM_SERVER_PORT=8888

If multiple browsers are connected to your selenium grid, you can choose the browser to run the tests with like this:

3

http://seleniumhq.org/download/

gocept.selenium, Release 3.0

GOCEPT_SELENIUM_BROWSER=*iexplore

For use with Selenium Server’s webdriver interface, the browser needs to be specified differently:

GOCEPT_WEBDRIVER_BROWSER=firefox

Webdriver supports instantiating the browser directly (instead of going through the Java-based server component). If
you want to do this, set:

GOCEPT_WEBDRIVER_REMOTE=False

and specify one of the browser classes defined by the Python bindings, for example:

GOCEPT_WEBDRIVER_BROWSER=Firefox

If you want to use a Firefox binary at a custom path, specify it like this:

GOCEPT_WEBDRIVER_FF_BINARY=<PATH>/firefox

By default, the selenium layer will make the HTTP server under test bind to localhost and listen to a random port
chosen by the kernel (i.e. instruct it to bind to port 0). This randomly chosen port is then used to point the browser at
the application. You may want to influence this behaviour, e.g. when running your selenium tests on a selenium grid:

GOCEPT_SELENIUM_APP_HOST=10.0.0.15
GOCEPT_SELENIUM_APP_PORT=8001

When you are testing an application on one machine, you can access the running application from another machine if
you set GOCEPT_SELENIUM_APP_HOST = 0.0.0.0 instead of the default localhost.

You can control the timeout of waitFor assertions and other selenium actions by setting a timeout in seconds:

GOCEPT_SELENIUM_TIMEOUT=10 (default: 30 seconds)

You can also set the speed with which the tests are run through an environment variable:

GOCEPT_SELENIUM_SPEED=500

This example will introduce a 500 millisecond pause between tests.

1.2 Jenkins integration

If you use Jenkins, you might be interested in the JUnit Attachment Plugin, and setting:

GOCEPT_SELENIUM_JUNIT_ATTACH=True

This will print information about the screenshot of a failure that the plugin can read and attach the screenshot to the
test run.

In the configuration of the jenkins job you need a Post-build Action called Publish JUnit test result report. This action
needs an Additional test report feature called Publish test attachments to ask Jenkins to keep the screenshots for you.

Caution: zope.testrunner is not usable for this behavior, you have to use a test runner like py.test. Newer py.test
versions require you to write junit_logging = system-out to pytest.ini so the information is written to the
junit.xml file. Run py.test with the command line option --junitxml=junit.xml to create this file. (That’s what
you’ll normally do to get the test results to Jenkins.)

4 Chapter 1. Setting up the environment

https://github.com/SeleniumHQ/selenium/blob/master/py/selenium/webdriver/__init__.py
https://wiki.jenkins-ci.org/display/JENKINS/JUnit+Attachments+Plugin
https://pypi.python.org/pypi/zope.testrunner
https://pypi.python.org/pypi/pytest
https://pypi.python.org/pypi/pytest
https://pypi.python.org/pypi/pytest

gocept.selenium, Release 3.0

1.3 Tips & Tricks

1.3.1 Using a custom Firefox profile

For debugging purposes it’s helpful to have the Firebug debugger available in the Selenium-controlled browser. To do
that, create a new Firefox profile and install Firebug into it. Then you can tell Selenium to use this profile as a profile
template when running Firefox:

$ java -jar /path/to/selenium-server-standalone-2.xx.xx.jar -firefoxProfileTemplate ~/
→˓.mozilla/firefox/<PROFILE_FOLDER>

When using webdriver, instead set this environment variable for running the tests (not Selenium Server):

GOCEPT_WEBDRIVER_FF_PROFILE=~/.mozilla/firefox/<PROFILE_FOLDER>

1.3.2 Using a nested X Server

On Linux systems, the Selenium-controlled browser tends to steal the window focus, which makes it impossible to do
anything else while a Selenium test is running. To prevent this, use Xephyr (successor of Xnest) to start an X server
contained in a window, for example:

#!/bin/sh
display=:1
Xephyr -host-cursor -dpi 100 -wr -screen 1400x900 $display &
export DISPLAY=$display
sleep 2
metacity & # or any other window manager
x-terminal-emulator -e java -jar /path/to/selenium-server-standalone-2.xx.xx.jar

1.3. Tips & Tricks 5

http://getfirebug.com/

gocept.selenium, Release 3.0

6 Chapter 1. Setting up the environment

CHAPTER 2

Integration

gocept.selenium provides integration with several web frameworks. Since version 1.1, however, the actual integration
functionality has been extracted to gocept.httpserverlayer, so the recommended setup is to use one layer from there that
integrates with your application (see gocept.httpserverlayer documentation for details) and provides an HTTP server,
and then stack the layer from gocept.selenium on top of that, to provide the Selenium integration:

import gocept.httpserverlayer.wsgi
import gocept.selenium
from mypackage import App

http_layer = gocept.httpserverlayer.wsgi.Layer(App())
selenium_layer = gocept.selenium.WebdriverLayer(

name='SeleniumLayer', bases=(http_layer,))
selenese_layer = gocept.selenium.WebdriverSeleneseLayer(

name='SeleneseLayer', bases=(selenium_layer,))

class TestWSGITestCase(gocept.selenium.WebdriverSeleneseTestCase):

layer = selenese_layer

def test_something(self):
self.selenium.open('http://%s/foo.html' % self.selenium.server)
self.selenium.assertBodyText('foo')

The previous set of layers that provide both the HTTP server and Selenium in one layer is still available. Different
frameworks require different dependencies; this is handled via setuptools extras of gocept.selenium (e.g. for Grok
integration you need to require gocept.selenium[grok]). Generally, you need a test layer that handles the
setup, and then have your tests inherit from the appropriate TestCase.

2.1 WSGI

No extra requirements (simply gocept.selenium).

This test layer takes a WSGI callable and runs it in a temporary HTTP server:

7

http://pypi.python.org/pypi/gocept.httpserverlayer
http://pypi.python.org/pypi/gocept.httpserverlayer

gocept.selenium, Release 3.0

import gocept.selenium.wsgi
from mypackage import App

test_layer = gocept.selenium.wsgi.Layer(App())

class WSGIExample(gocept.selenium.wsgi.TestCase):

layer = test_layer

def test_something(self):
self.selenium.open('http://%s/foo.html' % self.selenium.server)
self.selenium.assertBodyText('Hello world!')

2.2 Static files

No extra requirements (simply gocept.selenium).

This test case provides a temporary directory (as self.documentroot) that is served via HTTP where tests can
put HTML files to examine:

import gocept.selenium.static

class StaticFilesExample(gocept.selenium.static.TestCase):

def test_something(self):
open(os.path.join(self.documentroot, 'foo.html'), 'w').write(

'Hello World!')
self.selenium.open('http://%s/foo.html' % self.selenium.server)
self.selenium.assertBodyText('Hello world!')

2.3 Zope3 / ZTK (zope.app.wsgi)

If your ZTK application uses zope.app.wsgi.testlayer, see Grok for integrating gocept.selenium.

2.4 Grok

Requires gocept.selenium[grok].

This test layer groks your package and sets everything up so Selenium can access the application. You will probably
want to setup your app in your test setup:

import gocept.selenium.grok
import transaction

selenium_layer = gocept.selenium.grok.Layer(my.package)

class GrokExample(gocept.selenium.grok.TestCase):

layer = selenium_layer

(continues on next page)

8 Chapter 2. Integration

gocept.selenium, Release 3.0

(continued from previous page)

def setUp(self):
super(MyTest, self).setUp()
root = self.getRootFolder()
root['app'] = mypackage.App()
transaction.commit()

def test(self):
self.selenium.open('/app')
self.selenium.assertBodyText('Hello world!')

2.5 Zope 2

Requires gocept.selenium[zope2]

This test layer requires Testing.ZopeTestCase.layer.ZopeLiteLayer and provides an HTTP server for
the tests. See gocept.selenium.zope2.tests.test_zope212 for details how to set this up.

2.6 Zope 2 via WSGI

If your Zope 2 setup supports it, you can use the WSGI integration instead of a specialised Zope 2 integration to run
your tests.

You might see the following exception when running tests:

File ".../repoze.retry-1.0-py2.7.egg/repoze/retry/__init__.py", line 55, in __call__
cl = int(cl)

ValueError: invalid literal for int() with base 10: ''

To fix it you can use an additional middleware around your WSGI application: gocept.selenium.wsgi.
CleanerMiddleware. It also fixes an issue with wsgiref. See comments in the code for more information.

2.7 Zope 2 / Plone with plone.testing

Requires gocept.selenium[plonetesting].

gocept.selenium provides a plone.testing.Layer at gocept.selenium.plonetesting.
SELENIUM that you can mix and match with your other layers, see gocept.selenium.plonetesting.
testing with gocept.selenium.plonetesting.tests.zope2, and gocept.selenium.
plonetesting.testing_plone with gocept.selenium.plonetesting.tests.plone{3,4}
for details how to set this up.

2.8 Converting Selenese HTML files

Selenium tests can be written in HTML tables.

Their syntax is a bit clunky. But their development and debugging is eased a lot by using Selenium IDE Firefox
extension. Selenium IDE provides both initial recording of tests and stepping through those tests. However, HTML
tests have a main drawback: they are hard to include in a continuous integration system.

2.5. Zope 2 9

gocept.selenium, Release 3.0

gocept.selenium provides a script that converts a set of Selenium HTML tests into a Python module with a
TestCase (based on gocept.selenium and plone.testing).

Using the converthtmltests script, the developer can use HTML tests – written, debugged and maintained with
the Selenium tools – while being able to easily include those Selenium tests in a continuous integration system.

2.8.1 Usage

converthtmltests -l LAYER [options] directory

options:
-f FILE, --file=FILE write tests to FILE
-l LAYER, --layer=LAYER

full python import path to layer instance

The script gathers and converts all Selenium HTML tests found in the mentioned directory.

The user must refer to a plone.testing layer by specifying its Python import path. That layer is set on the test
case generated in the Python module.

An output file can be specified. In case no output file name is specified, the module produced is named
tests_all_selenium.py.

10 Chapter 2. Integration

CHAPTER 3

API reference

3.1 Selenese API

3.1.1 General information

The Selenese object available as self.selenium for each TestCase provides methods to control the browser,
and to make assertions about things the browser sees.

For a detailed list of commands and assertions please consult the Selenium Reference.

Assertions come in several flavours:

• Return the value self.selenium.getText('id=foo')

• Assert self.selenium.assertText('id=foo', 'blabla')

• Negated Assert self.selenium.assertNotText('id=foo', 'blabla')

• Wait self.selenium.waitForElementPresent('id=foo')

• Negated Wait self.selenium.waitForNotElementPresent('id=foo')

3.2 Webdriver API

Starting with version 2, gocept.selenium also includes integration with Selenium’s webdriver backend, the plan being
to keep our own API as backwards-compatible as possible during the 2.x release series and switching to a modernized
API only with version 3.

This means that we’ve set out to implement the Selenese API on top of webdriver and while this has proven to be
possible to a large extent, some details of the Selenese API don’t make any sense or are too different to be worth
implementing in a webdriver environment.

Here’s how to set this up (see Integration for details):

11

http://release.seleniumhq.org/selenium-core/1.0.1/reference.html

gocept.selenium, Release 3.0

import gocept.httpserverlayer.wsgi
import gocept.selenium
from mypackage import App

http_layer = gocept.httpserverlayer.wsgi.Layer(App())
webdriver_layer = gocept.selenium.WebdriverLayer(

name='WSGILayer', bases=(http_layer,))
test_layer = gocept.selenium.WebdriverSeleneseLayer(

name='WebdriverTestLayer', bases=(webdriver_layer))

class TestWSGITestCase(gocept.selenium.WebdriverSeleneseTestCase):

layer = test_layer

def test_something(self):
self.selenium.open('http://%s/foo.html' % self.selenium.server)
self.selenium.assertBodyText('foo')

Here’s a list of backwards-incompatibilities between using WebdriverSeleneseLayer and the (old) SeleniumRC-backed
gocept.selenium.RCLayer:

• getEval behaves differently.

– getEval adds a return statement in front of the code, i.e. to run Javascript code which is not an
expression, use runScript

– getEval has access to different globals now: browserbot is no longer defined, while window and
document refer directly to the window under test.

– getEval returns the dictionary representation of objects instead of the rather uninformative [object
Object].

• The browser name syntax has changed: specify Firefox as “firefox”, not “firefox*” (concerns the en-
vironment variable for setting the browser, which used to be GOCEPT_SELENIUM_BROWSER and is
GOCEPT_WEBDRIVER_BROWSER for webdriver). See the WebDriver wiki for possible browser names.

• With Selenium Remote-Control one had to change the base Firefox profile to be used on the server side (by
passing -firefoxProfileTemplate to selenium-server.jar). With WebDriver this has moved to
the client side, so you can select a profile by setting the path to an existing Firefox profile as the environment
variable GOCEPT_SELENIUM_FF_PROFILE.

• Selenese methods that don’t work yet:

– highlight

– getSpeed

– setSpeed

– getAllWindowNames

– getAllWindowTitles

– selectPopUp

– deselectPopUp

• Selenese methods with changed behaviour:

– open: dropped the ignoreResponseCode parameter

– assertOrdered only works with relative xpath locators, not with any element locators anymore.

12 Chapter 3. API reference

http://code.google.com/p/selenium/wiki/DesiredCapabilities

gocept.selenium, Release 3.0

• Selenese methods that have been removed and are not coming back:

– addCustomRequestHeader

– addLocationStrategy

– addScript

– allowNativeXpath

– answerOnNextPrompt

– assignId

– captureNetworkTraffic

– chooseCancelOnNextConfirmation

– chooseOkOnNextConfirmation

– fireEvent

– focus

– getMouseSpeed

– getTable

– ignoreAttributesWithoutValue

– removeScript

– retrieveLastRemoteControlLogs

– setBrowserLogLevel

– setContext

– setCursorPosition

– setMouseSpeed

– useXpathLibrary

– waitForFrameToLoad

• Locator patterns that can no longer be used:

– option: id

– frame: relative, dom

On the other hand, here are some new features that only WebdriverSeleneseLayer offers:

• Locator js (or dom or anything that starts with document): Find an element by evaluating a javascript ex-
pression. Example: getText('js=document.getElementsByClassName("foo")')

• Convenience locator jquery (when your site already loads jQuery). Example: getText('jquery=.
foo') (this is the equivalent of getText('js=window.jQuery(".foo")[0]'))

3.3 Test helpers

3.3.1 assertScreenshot

3.3. Test helpers 13

gocept.selenium, Release 3.0

Note: assertScreenshot needs PIL. You might consider to require the screenshot extra in your setup.py like so:
gocept.selenium[screenshot]

The assertScreenshot method allows you to validate the rendering of a HTML element in the browser. A
screenshot of the element is saved in a given directory and in your test assertScreenshot takes a picture of the
currently rendered element and compares it with the one saved in disk. The test will fail, if the screenshot and the
taken picture do not match (within a given threshold).

assertScreenshot takes the following arguments:

name A name for the screenshot (which will be appended with .png).

locator A locator to the element, which will be captured.

threshold If the difference2 in percent between the saved and current image is greater than the threshold,
a failure is triggered. (defaults to 1)

There is a capture mode available to help you in retrieving your master screenshot (which will be left on disk for
comparison). When writing your test, set capture_screenshot on the Selenese object (see general-information)
to True and the test run will save the screenshot to disk instead of comparing it. Before you check in your newly
created screenshot, you should watch it to make sure, it looks like you expected it. Setting capture_screenshot
to False will compare the screenshot on disk with a newly created temporary image during the next test run.

If assertScreenshot fails, paths to the following images are provided to you in the error message:

original The path to the original image (the master image).

current The path to the image taken in the current test run (from the browser).

diff The path to an image highlighting the differences between original and current.

If you would like to open the image showing the differences in an image viewer, set the environment variable
SHOW_DIFF_IMG before running the test.

3.3.2 Skipping tests for certain browsers

There are cases when a test should does not pass on certain browsers. This is either due to the application using
browser features which are not supported by the browser, or due to selenium not working well with the browser. To
aid in skipping tests in these cases, there is a test decorator gocept.selenium.skipUnlessBrowser(name,
version=None):

>>> class TestClass(...):
...
... @gocept.selenium.skipUnlessBrowser('Firefox', '>=16.0')
... def test_fancy_things(self):
... ...

Note: skipUnlessBrowser only supports skipping test methods. It cannot be used as class decorator.

3.3.3 Downloading files

By default selenium does not support to download files because this is done via native operating system dialogues
which selenium cannot intercept.

2 The difference is computed as normalised root mean square deviation of the two images.

14 Chapter 3. API reference

http://release.seleniumhq.org/selenium-remote-control/0.9.0/doc/dotnet/html/Selenium.html

gocept.selenium, Release 3.0

The only way seems to be to instruct the browser to always store downloads of a certain MIME type in the download
directory.

This is implemented in gocept.selenium for PDF files when using Firefox. The download directory is ac-
cessible as a pathlib.Path via self.layer['selenium_download_dir']. It gets cleared at the end of
every test.

3.3. Test helpers 15

gocept.selenium, Release 3.0

16 Chapter 3. API reference

CHAPTER 4

Development

4.1 Developing gocept.selenium

Author gocept <mail@gocept.com>

Online documentation https://goceptselenium.readthedocs.org/

PyPI page https://pypi.python.org/pypi/gocept.selenium/

Issue tracker https://github.com/gocept/gocept.selenium/issues

Source code https://github.com/gocept/gocept.selenium

Current change log https://raw.githubusercontent.com/gocept/gocept.selenium/master/CHANGES.rst

4.1.1 Documentation

In order to build the Sphinx documentation, run the following commands:

$ python3 -m venv .
$ bin/pip install Sphinx
$ bin/sphinx-build doc doc/build

The generated HTML gets stored in doc/build.

4.2 Changelog

4.2.1 7.1 (2022-06-30)

• Fix deprecation warnings.

• Depend on webdriver-manager to get drivers automatically updated.

17

http://gocept.com/
mailto:mail@gocept.com
https://goceptselenium.readthedocs.org/
https://pypi.python.org/pypi/gocept.selenium/
https://github.com/gocept/gocept.selenium/issues
https://github.com/gocept/gocept.selenium
https://raw.githubusercontent.com/gocept/gocept.selenium/master/CHANGES.rst

gocept.selenium, Release 3.0

• Add support for edge headless mode and test it on GHA.

4.2.2 7.0 (2022-06-28)

• Remove .screenshot.ZeroDimensionError. Where it was previously raised now the whole screen-
shot is saved.

4.2.3 6.1 (2021-05-04)

• Fix links and typos in documentation.

• Fix tests running on Google Chrome. (Issue #20)

• Google Chrome: Add temporary download directory support. It is accessible as a pathlib.Path via self.
layer['selenium_download_dir'].

• Google Chrome: Add support for head mode.

• Add beta support for Microsoft Edge. (It currently supports all features besides headless mode and down-
load directory support but is only tested using the tests of gocept.selenium. Caution: Edge does not
seem to be really stable on Mac OS, after some test runs it sometimes refuses to start and requires to delete its
preferences etc.)

• Add access to the selected browser and headless mode via a getitem call on the layer.

4.2.4 6.0 (2020-12-16)

Backwards incompatible changes

• Drop support for Python 2, 3.5 and 3.6.

• Remove requirements.txt.

Features

• Add support for Python 3.8 and 3.9.

• Firefox: Add a temporary download directory for PDF files. It is accessible as a pathlib.Path via self.
layer['selenium_download_dir'].

4.2.5 5.2 (2020-10-28)

• Delete localStorage on testTearDown of .webdriver.Layer.

• Wait for elements the time defined as timeout instead of always 5 seconds.

4.2.6 5.1 (2019-11-14)

• Catch ElementClickInterceptedException when an element is clicked.

• Migrate to Github.

18 Chapter 4. Development

gocept.selenium, Release 3.0

4.2.7 5.0 (2019-05-02)

• Fix UserWarning in selenium >= 3, that screenshot name should end with .png.

4.2.8 5.0a1 (2019-03-05)

Backwards incompatible changes

• Remove support for Selenium 1, in particular RCTestCase and RCLayer.

• Remove support for Selenium 2.

• Remove support for a remote selenium server. gocept.selenium now uses the local implementation, starting its
own browser.

Features

• Add support for Python 3.6 and 3.7.

• Selenium updated to version 3.

• Add firefox headless support.

• Add new defaults for gocept.selenium.webdriver.Layer.

• Add experimental support for chromedriver in headless mode only.

Other changes

• Remove bootstrap.py, add requirements.txt.

• Fix more deprecation warnings.

• selenese_pattern_equals() in wd_selenese.py now returns a bool.

4.2.9 4.0 (2018-11-09)

• Drop support for Zope 2.

• Depend on gocept.httpserverlayer >= 3.

• Depend on plone.testing >= 7.0.

• Fix deprecation warnings.

4.2.10 3.1.1 (2017-03-07)

• Fix wd_selense.Selenese.selectFrame('index=0') to forward the index as number to the un-
derlying WebDriver so it is actually treated as an index.

4.2.11 3.1 (2016-11-11)

• Support selenium versions >= 2.53. https://bitbucket.org/gocept/gocept.selenium/issues/12

• Require a selenium version < 3.0 as this version removed the support for Selenium RC.

4.2. Changelog 19

https://bitbucket.org/gocept/gocept.selenium/issues/12

gocept.selenium, Release 3.0

4.2.12 3.0 (2016-06-07)

• Drop support for:

– zope.app.testing (extras_require: [ztk])

– Testing.ZopeTestCase (extras_require: [zope2])

– plone.app.testing (extras_require: [test_plonetestingz2])

– Products.PloneTestCase (extras_require: [plonetestcase])

• Remove the empty script extras_require.

• Drop support for Python 2.4, 2.5, 2.6. Now only supporting Python 2.7.

• Currently only supporting a selenium version < 2.53 as this version breaks using a custom Firefox. See
https://github.com/SeleniumHQ/selenium/issues/1965

• Add .wd_selense.Selenese.selectParentFrame() to select the parent of a frame or an iframe.

4.2.13 2.5.4 (2016-04-12)

• Fix using a local Firefox using GOCEPT_WEBDRIVER_REMOTE=False as the environment setting.

4.2.14 2.5.3 (2016-04-11)

• Update tests to gocept.httpserverlayer >= 1.4.

4.2.15 2.5.2 (2016-04-11)

• Add documentation for the Jenkins integration of screenshots made from test failures. (#13936)

• Webdriver: Add a loop with time-out to click in order to deal with
StaleElementReferenceException and NoSuchElementException.

4.2.16 2.5.1 (2015-08-27)

• Webdriver: waitFor retries an assertion when NoSuchElementException was raised. (This is useful for
assertions like waitForVisible.)

4.2.17 2.5.0 (2015-08-05)

• Add clear to webdriver to delete the contents of an input field.

4.2.18 2.4.1 (2015-06-23)

• Write junit annotations when a screenshot was taken for assertions beside assertScreenshot(). (#13678)

20 Chapter 4. Development

https://github.com/SeleniumHQ/selenium/issues/1965

gocept.selenium, Release 3.0

4.2.19 2.4.0 (2015-03-27)

• Added getCssCount and getXpathCount, so tests can get a baseline before an action.

• Fix getSelectedValue for webdriver.

4.2.20 2.3.0 (2015-03-09)

• Webdriver: waitFor will now retry the assertion when StaleElementReferenceException was
raised, instead of yielding the error. (This could happen for assertions like waitForAttribute, which
would retrieve the DOM node and then ask for it’s attribute. Thus the node can be changed in-between, which
leads to the error.)

4.2.21 2.2.2 (2015-01-09)

• Improve environment variable handling implementation.

4.2.22 2.2.1 (2015-01-07)

• Fix handling firefox profile in remote=false mode.

4.2.23 2.2.0 (2015-01-07)

• Allow launching the browser directly when using Webdriver (set GOCEPT_WEBDRIVER_REMOTE=False
and the browser name accordingly).

• Add optional movement parameter to dragAndDropToObject that moves the mouse a little before releas-
ing the button, so one gets more realistic behaviour when needed (Webdriver only, RC does not seem to have
this issue).

• Add js and jquery locators (Webdriver only).

4.2.24 2.1.9 (2014-11-06)

• Fixed capitalisation of Selenese’s chooseOkOnNextConfirmation. (Backwards incompatibility should
be OK as it can never have worked before, anyway.)

4.2.25 2.1.8 (2014-09-04)

• No longer stop whole test run if an exception occures during testSetUp of .seleniumrc.Layer (#13375)

4.2.26 2.1.7 (2014-08-12)

• Remove window.gocept_selenium_abort_all_xhr again, this solution is incomplete, since we can
only inject this during open() – when the browser then navigates to a different page, the injection is lost.

4.2. Changelog 21

gocept.selenium, Release 3.0

4.2.27 2.1.6 (2014-08-06)

• Inject JS function window.gocept_selenium_abort_all_xhr during open(), which is useful to call
during test teardown to avoid spurious XHR requests to still be performed after the actual test has already ended.
(Implemented in Webdriver only, but could be backported to RC if needed).

4.2.28 2.1.5 (2014-07-26)

• Webdriver: Only create a firefox profile when the selected browser is firefox (#11763).

4.2.29 2.1.4 (2014-07-09)

• Restore Python 2.6 compatibility of tests accidently broken in release 2.1.3.

• Adjust isElementPresent of WebDriver to work with PhantomJS, since it may raise a general WebDriverExcep-
tion if the element was not found.

4.2.30 2.1.3 (2014-07-07)

• Webdriver: No longer screenshotting while waiting for the condition to become true when using a waitFor*
method.

4.2.31 2.1.2 (2014-06-25)

• Remove seleniumrc variable from Layer on teardown for symmetry.

• Fix isVisible of WebDriver, so it also returns False if a parent element is hidden.

4.2.32 2.1.1 (2014-04-28)

• Close temporary files when making screenshots. This fixes some occurrences of “Too many open files”.

4.2.33 2.1.0 (2013-12-20)

• Make timeout configurable via environment variable GOCEPT_SELENIUM_TIMEOUT (#10497).

• Apply setTimeout to the open() timeout, too (#10750).

• Add environment variable GOCEPT_SELENIUM_JUNIT_ATTACH to support the “JUnit Attachments Plugin”
for Jenkins.

internal:

• Move instantiating Selenese object from testSetUp to layer setUp. This should not change the behaviour for
clients (we take care to reset the configured timeout in testSetUp as before), but take care.

• Fix URL to GROK toolkit versions.

4.2.34 2.0.0 (2013-10-02)

• Marking 2.0 stable, yay.

22 Chapter 4. Development

gocept.selenium, Release 3.0

4.2.35 2.0.0b6 (2013-10-02)

• Save screenshots of assertion failures with mode 644 (world-readable), which is useful for build servers.

4.2.36 2.0.0b5 (2013-10-01)

• Implement setWindowSize for both RC and Webdriver.

• Implement getAllWindowIds in RC-Selenese.

4.2.37 2.0.0b4 (2013-04-26)

• If a test fails because of an empty body, taking automatically a screenshot failed and concealing the original
error message. This is now fixed. (#12341)

4.2.38 2.0.0b3 (2013-04-10)

• Improved documentation, in particular with respect to the changes by integrating webdriver.

• If an AssertionError occures in a test using webdriver, a screenshot is taken automatically and the path is
presented to the user. (#12247)

• Made a test for assertScreenshot pass on systems with a different browser default font.

4.2.39 2.0.0b2 (2013-03-01)

• Stabilize webdriver/selenese API functions waitForPageToLoad() and isTextPresent to not raise errors when the
elements vanish in between.

4.2.40 2.0.0b1 (2013-02-14)

• Extract StaticFilesLayer to gocept.httpserverlayer.

• Added assertScreenshot to visually compare rendered elements with a master screenshot.

4.2.41 2.0.0a2 (2013-01-09)

• Add layer that uses Webdriver as the Selenium backend instead of the old Remote Control.

4.2.42 1.1.2 (2012-12-21)

• Fix: Initialise the WSGI layer in the correct order to actually allow the configured WSGI app to be remembered.

• Fix: updated some imports after the extraction of gocept.httpserverlayer.

4.2.43 1.1.1 (2012-12-19)

• Update StaticFilesLayer to the new httpserverlayer API.

4.2. Changelog 23

gocept.selenium, Release 3.0

4.2.44 1.1 (2012-12-19)

• Extract HTTP server integration into separate package, gocept.httpserverlayer

4.2.45 1.0 (2012-11-03)

• Marking the API as stable.

4.2.46 0.17 (2012-11-01)

• Added gocept.selenium.skipUnlessBrowser decorator to skip tests unless ceratins browser require-
ments are met.

• Fix: The static test server did not shutdown in some situations.

4.2.47 0.16 (2012-10-10)

• Fixed selenese popup tests.

• Open a random port for the server process by default: When the environment variable GO-
CEPT_SELENIUM_APP_PORT is not set, a random free port is bound. This allows parallel testing, for instance
(#11323).

4.2.48 0.15 (2012-09-14)

• WSGI-Layer is comptabile with Python 2.5.

• Encoding support in converthtmltests (Patch by Tom Gross <tom@toms-projekte.de>).

• XHTML support for selenium tables (Patch by Tom Gross <tom@toms-projekte.de>).

4.2.49 0.14 (2012-06-06)

• API expansion: Added assertCssCount. Thus requiring selenium >= 2.0.

• Added Trove classifiers to package metadata.

• Moved code to Mercurial.

4.2.50 0.13.2 (2012-03-15)

• Fixed WSGI flavor: There was a RuntimeError in tear down if the WSGI server was shut down correctly.

4.2.51 0.13.1 (2012-03-15)

• Updated URL of bug tracker.

• script extra no longer requires elementtree on Python >= 2.5.

24 Chapter 4. Development

mailto:tom@toms-projekte.de
mailto:tom@toms-projekte.de

gocept.selenium, Release 3.0

4.2.52 0.13 (2012-01-30)

• Added a selenese assert type ‘list’ and added it to the window management query methods.

• API expansion: added openWindow.

• API change: filter the result of getAllWindowNames to ignore ‘null’.

• backwards-compatible API change: selectWindow now selects the main window also when passed the win-
dow id None or no argument at all.

• pinned compatible ZTK version to 1.0.1, grok version to 1.2.1, generally pinned all software packages used to
consistent versions for this package’s own testing

4.2.53 0.12 (2011-11-29)

• API expansion: added getAllWindow* and selectWindow.

4.2.54 0.11 (2011-09-15)

• Added some notes how to test a Zope 2 WSGI application.

• Described how to test a Zope 2/Plone application if using plone.testing to set up test layers.

4.2.55 0.10.1 (2011-02-02)

• Improvements on the README.

• Wrote a quick start section for packages using ZTK but using zope.app.wsgi.testlayer instead of
zope.app.testing.

• Allowed to use regexp as pattern prefix for regular expressions additionally to regex to be compatible with the
docstring and the Selenium documentation.

4.2.56 0.10 (2011-01-18)

• Script that generates python tests from Selenium HTML tables. Reused from KSS project, courtesy of Jeroen
Vloothuis, original author.

• Using a URL of Selenium RC in README where version 1.0.3 can be downloaded (instead of 1.0.1) which
works fine with Firefox on Mac OS X, too.

4.2.57 0.9 (2010-12-28)

• Provide integration with the recent testlayer approach (zope.app.appsetup/zope.app.wsgi) used by Grok (#8260).

• Provide integration with plone.testing

• Make browser and RC server configurable (#6484).

• Show current test case in command log (#7876).

• Raise readable error when connection to RC server fails (#6489).

• Quit browser when the testrunner terminates (#6485).

4.2. Changelog 25

gocept.selenium, Release 3.0

4.2.58 0.8 (2010-10-22)

• Fixed tests for the StaticFilesLayer to pass with Python 2.4 through 2.7.

• API expansion: getSelectOptions

4.2.59 0.7 (2010-08-16)

• API expansion: getElementHeight|Width, getCookie* and a few others.

• lots of action methods (mouse* among others)

4.2.60 0.6 (2010-08-09)

• assertXpathCount now also takes ints (#7681).

• API expansion: add isChecked to verify checkboxes, runScript, clickAt, getLocation,
getSelectedValue, getSelectedIndex.

• The pause method uses float division now. Pauses where implicitly rounded to full seconds before when an int
was passed.

• The name of the factored test layer contains the module of the bases now. The name is used by zope.testrunner
distinguish layers. Before this fix selenium layers factored from base layers with the same names but in different
modules would be considered equal by zope.testrunner.

• The factored ZTK layer cleanly shuts down the http server in tearDown now. This allows to run different
selenium layers in one go.

4.2.61 0.5 (2010-08-03)

• Add a static files test layer for running selenium tests against a set of static (HTML) files.

• Patterns now also work with multiline strings, i. e. ‘foo*’ will match ‘foonbar’ (#7790).

4.2.62 0.4.2 (2010-05-20)

• API expansion: *keyDown, *keyUp, keyPress.

4.2.63 0.4.1 (2010-04-01)

• API expansion: added getSelectedLabel.

• Ignore the code of a server’s response when calling open. The default behaviour of SeleniumRC changed
between 1.0.1 and 1.0.2 but we want the old behaviour by default.

4.2.64 0.4 (2010-03-30)

• API expansion: add getLocation to retrieve currently loaded URL in browser.

• API expansion: added waitForPopUp, selectPopUp, deselectPopUp and close.

• API expansion: added verifyAlertPresent, verifyAlertNotPresent and
waitForAlertPresent.

26 Chapter 4. Development

gocept.selenium, Release 3.0

• Usability: raise a better readable exception when an unimplemented selenese method is called.

• Usability: raise failure exceptions that convey the name of the failed assertion in spite of some lambdas wrapped
around it.

4.2.65 0.3 (2010-01-12)

• Extracted ‘host’ and ‘port’ as class attributes of gocept.selenium.ztk.Layer so subclasses can override them;
stopped hardcoding 8087 as the server port.

4.2.66 0.2.1 (2009-12-18)

• Fix incomplete sdist release on PyPI.

4.2.67 0.2 (2009-12-18)

• Make Zope 2 test server reachable from the outside.

• Implemented getTitle/assertTitle/waitForTitle/etc.

4.2.68 0.1 (2009-11-08)

• first release

4.2. Changelog 27

	Setting up the environment
	Environment variables
	Jenkins integration
	Tips & Tricks

	Integration
	WSGI
	Static files
	Zope3 / ZTK (zope.app.wsgi)
	Grok
	Zope 2
	Zope 2 via WSGI
	Zope 2 / Plone with plone.testing
	Converting Selenese HTML files

	API reference
	Selenese API
	Webdriver API
	Test helpers

	Development
	Developing gocept.selenium
	Changelog

