

 Navigation

 	
 index

 	
 next |

 	gocept.selenium 1.0 documentation

gocept.selenium

gocept.selenium provides an API for the Selenium remote control [http://seleniumhq.org/projects/remote-control/] that is
suited for writing tests and integrates this with your test suite for any WSGI,
Plone, Zope 2, ZTK, or Grok application.

While the testing API could be used independently, the integration is done
using test layers [http://pypi.python.org/pypi/plone.testing#layers], which are a feature of zope.testrunner [http://pypi.python.org/pypi/zope.testrunner].

Contents:

	Installation
	Environment variables

	Tips & Tricks

	Integration
	WSGI

	Static files

	Zope3 / ZTK (zope.app.testing)

	Zope3 / ZTK (zope.app.wsgi)

	Grok

	Zope 2

	Zope 2 via WSGI

	Plone

	Zope 2 / Plone with plone.testing

	Converting Selenese HTML files

	API reference
	Selenese API

	Test helpers

	Developing gocept.selenium
	buildout configuration

	Changelog
	1.1.2 (2012-12-21)

	1.1.1 (2012-12-19)

	1.1 (2012-12-19)

	1.0 (2012-11-03)

	0.17 (2012-11-01)

	0.16 (2012-10-10)

	0.15 (2012-09-14)

	0.14 (2012-06-06)

	0.13.2 (2012-03-15)

	0.13.1 (2012-03-15)

	0.13 (2012-01-30)

	0.12 (2011-11-29)

	0.11 (2011-09-15)

	0.10.1 (2011-02-02)

	0.10 (2011-01-18)

	0.9 (2010-12-28)

	0.8 (2010-10-22)

	0.7 (2010-08-16)

	0.6 (2010-08-09)

	0.5 (2010-08-03)

	0.4.2 (2010-05-20)

	0.4.1 (2010-04-01)

	0.4 (2010-03-30)

	0.3 (2010-01-12)

	0.2.1 (2009-12-18)

	0.2 (2009-12-18)

	0.1 (2009-11-08)

 Copyright 2011, Zope Foundation and Contributors.
 Sphinx-Theme adapted from
 Jinja
.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gocept.selenium 1.0 documentation

Installation

Download the Selenium Remote Control JAR from seleniumhq.org [http://seleniumhq.org/download/] and run:

$ java -jar /path/to/selenium-server.jar

This starts the server process that your tests will connect to to spawn and
control the browser.

Choose the appropriate test layer (see Integration) and create a test
case:

import gocept.selenium.wsgi
from mypackage import App

test_layer = gocept.selenium.wsgi.Layer(App())

class TestWSGITestCase(gocept.selenium.wsgi.TestCase):

 layer = test_layer

 def test_something(self):
 self.selenium.open('http://%s/foo.html' % self.selenium.server)
 self.selenium.assertBodyText('foo')

Environment variables

You can configure the selenium server that gocept.selenium connects to from the
command line. Selenium RC defaults to localhost:4444, but you can also connect
to a selenium grid in your organization by using the following environment
variables:

GOCEPT_SELENIUM_SERVER_HOST=selenium.mycompany.com
GOCEPT_SELENIUM_SERVER_PORT=8888

If multiple browsers are connected to your selenium grid, you can choose the
browser to run the tests with as such:

GOCEPT_SELENIUM_BROWSER=*iexplore

When you are running your selenium tests on a selenium grid, you need to
instruct the browser which host and port to connect to:

GOCEPT_SELENIUM_APP_HOST=10.0.0.15
GOCEPT_SELENIUM_APP_PORT=8001

The default for the port to bind is 0 which let the kernel choose a random,
free port.

When you are testing an application on one machine, you can access the running
application from another machine if you set GOCEPT_SELENIUM_APP_HOST =
0.0.0.0 instead of the default localhost.

You can set the speed with which the tests are run through an environment
variable:

GOCEPT_SELENIUM_SPEED=500

This example will introduce a 500 millisecond pause between tests.

Tips & Tricks

Using a custom Firefox profile

For debugging purposes it’s helpful to have the Firebug [http://getfirebug.com/] debugger available
in the Selenium-controlled browser. To do that, create a new Firefox profile
and install Firebug into it. Then you can tell Selenium to use this profile for
running Firefox:

$ java -jar /path/to/selenium-server.jar -firefoxProfileTemplate ~/.mozilla/firefox/<PROFILE_FOLDER>

Using a nested X Server

Under Linux, the Selenium-controlled browser tends to steal the mouse focus,
which makes it impossible to do anything else while a Selenium test is running.
To prevent this, use Xephyr (successor of Xnest) to start an X server contained
in a window, for example:

#!/bin/sh
display=:1
Xephyr -host-cursor -dpi 100 -wr -screen 1400x900 $display &
export DISPLAY=$display
sleep 2
metacity & # or any other window manager
x-terminal-emulator -e java -jar /path/to/selenium-server.jar

 Copyright 2011, Zope Foundation and Contributors.
 Sphinx-Theme adapted from
 Jinja
.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gocept.selenium 1.0 documentation

Integration

gocept.selenium provides integration with several web frameworks. Different
frameworks require different dependencies; this is handled via setuptools
extras of gocept.selenium (e.g. for Grok integration you need to require
gocept.selenium[grok]).

Generally, you need a test layer that handles the setup, and then have your
tests inherit from the appropriate TestCase.

WSGI

No extra requirements (simply gocept.selenium).

This test layer takes a WSGI callable and runs it in a temporary HTTP server:

import gocept.selenium.wsgi
from mypackage import App

test_layer = gocept.selenium.wsgi.Layer(App())

class WSGIExample(gocept.selenium.wsgi.TestCase):

 layer = test_layer

 def test_something(self):
 self.selenium.open('http://%s/foo.html' % self.selenium.server)
 self.selenium.assertBodyText('Hello world!')

Static files

No extra requirements (simply gocept.selenium).

This test case provides a temporary directory (as self.documentroot) that
is served via HTTP where tests can put HTML files to examine:

import gocept.selenium.static

class StaticFilesExample(gocept.selenium.static.TestCase):

 def test_something(self):
 open(os.path.join(self.documentroot, 'foo.html'), 'w').write(
 'Hello World!')
 self.selenium.open('http://%s/foo.html' % self.selenium.server)
 self.selenium.assertBodyText('Hello world!')

Zope3 / ZTK (zope.app.testing)

Requires gocept.selenium[ztk].

This test layer wraps your usual ZCMLLayer that is used for typical ZTK
functional tests, and provides an HTTP server for testing:

import gocept.selenium.ztk
import zope.app.testing.functional

zcml_layer = zope.app.testing.functional.ZCMLLayer(
 'ftesting.zcml', __name__, __name__, allow_teardown=True)
selenium_layer = gocept.selenium.ztk.Layer(zcml_layer)

class ZTKExample(gocept.selenium.ztk.TestCase):

 layer = selenium_layer

 def test(self):
 self.selenium.open('http://%s/foo.html' % self.selenium.server)
 self.selenium.assertBodyText('Hello world!')

Zope3 / ZTK (zope.app.wsgi)

If your ZTK application uses zope.app.wsgi.testlayer, see Grok for
integrating gocept.selenium.

Grok

Requires gocept.selenium[grok].

This test layer groks your package and sets everything up so Selenium can
access the application. You will probably want to setup your app in your test
setup:

import gocept.selenium.grok
import transaction

selenium_layer = gocept.selenium.grok.Layer(my.package)

class GrokExample(gocept.selenium.grok.TestCase):

 layer = selenium_layer

 def setUp(self):
 super(MyTest, self).setUp()
 root = self.getRootFolder()
 root['app'] = mypackage.App()
 transaction.commit()

 def test(self):
 self.selenium.open('/app')
 self.selenium.assertBodyText('Hello world!')

Zope 2

Requires gocept.selenium[zope2]

This test layer requires Testing.ZopeTestCase.layer.ZopeLiteLayer and
provides an HTTP server for the tests. See
gocept.selenium.zope2.tests.test_zope212 for details how to set this up.

Zope 2 via WSGI

If your Zope 2 setup supports it, you can use the WSGI integration instead of a
specialised Zope 2 integration to run your tests.

You might see the following exception when running tests:

File ".../repoze.retry-1.0-py2.7.egg/repoze/retry/__init__.py", line 55, in __call__
 cl = int(cl)
 ValueError: invalid literal for int() with base 10: ''

To fix it you can use an additional middleware around your WSGI
application: gocept.selenium.wsgi.CleanerMiddleware. It also fixes an
issue with wsgiref. See comments in the code for more information.

Plone

Requires gocept.selenium[plone].

This test layer requires Products.PloneTestCase.laye.PloneSiteLayer and
provides an HTTP server for the tests. See
gocept.selenium.plone.tests.test_plone{3,4} for details how to set this up.

Zope 2 / Plone with plone.testing

Requires gocept.selenium[plonetesting].

gocept.selenium provides a plone.testing.Layer at
gocept.selenium.plonetesting.SELENIUM that you can mix and match with your
other layers, see gocept.selenium.plonetesting.testing with
gocept.selenium.plonetesting.tests.zope2, and
gocept.selenium.plonetesting.testing_plone with
gocept.selenium.plonetesting.tests.plone{3,4} for details how to set this
up.

Converting Selenese HTML files

Selenium tests can be written in HTML tables.

Their syntax is a bit clunky. But their development and debugging is eased a
lot by using Selenium IDE Firefox extension. Selenium IDE provides both initial
recording of tests and stepping through those tests. However, HTML tests have a
main drawback: they are hard to include in a continuous integration system.

gocept.selenium provides a script that converts a set of Selenium HTML
tests into a Python module with a TestCase (based on gocept.selenium
and plone.testing).

Using the converthtmltests script, the developer can use HTML tests –
written, debugged and maintained with the Selenium tools – while being able to
easily include those Selenium tests in a continuous integration system.

Usage

converthtmltests -l LAYER [options] directory

options:
 -f FILE, --file=FILE write tests to FILE
 -l LAYER, --layer=LAYER
 full python import path to layer instance

The script gathers and converts all Selenium HTML tests found in the mentioned
directory.

The user must refer to a plone.testing layer by specifying its Python
import path. That layer is set on the test case generated in the Python module.

An output file can be specified. In case no output file name is specified,
the module produced is named tests_all_selenium.py.

On Python-2.4, converthtmltests requires gocept.selenium[script].

 Copyright 2011, Zope Foundation and Contributors.
 Sphinx-Theme adapted from
 Jinja
.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gocept.selenium 1.0 documentation

API reference

Selenese API

The Selenese object available as self.selenium for each TestCase
provides methods to control the browser, and to make assertions about things
the browser sees.

For a detailed list of commands and assertions please consult the Selenium
Reference [http://release.seleniumhq.org/selenium-core/1.0.1/reference.html].

Assertions come in several flavours:

	Return the value self.selenium.getText('id=foo')

	Assert self.selenium.assertText('id=foo', 'blabla')

	Negated Assert self.selenium.assertNotText('id=foo', 'blabla')

	Wait self.selenium.waitForElementPresent('id=foo')

	Negated Wait self.selenium.waitForNotElementPresent('id=foo')

Test helpers

Skipping tests for certain browsers

There are cases when a test should does not pass on certain browsers. This is
either due to the application using browser features which are not supported by
the browser, or due to selenium not working well with the browser. To aid in
skipping tests in these cases, there is a test decorator
gocept.selenium.skipUnlessBrowser(name, version=None):

>>> class TestClass(...):
...
... @gocept.selenium.skipUnlessBrowser('Firefox', '>=16.0')
... def test_fancy_things(self):
... ...

Note

skipUnlessBrowser only supports skipping test methods. It cannot
be used as class decorator.

Warning

The version test is only supported for Python >= 2.5. For Python < 2.5
only a name check can be performed. Giving a version number will skip the
test unconditionally.

 Copyright 2011, Zope Foundation and Contributors.
 Sphinx-Theme adapted from
 Jinja
.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	gocept.selenium 1.0 documentation

Developing gocept.selenium

	Author:	gocept [http://gocept.com/] <mail@gocept.com>

	Online documentation:

		http://packages.python.org/gocept.selenium/

	PyPI page:	http://pypi.python.org/pypi/gocept.selenium/

	Issue tracker:	https://projects.gocept.com/projects/gocept-selenium/

	Source code:	https://bitbucket.org/gocept/gocept.selenium/

	Current change log:

		https://bitbucket.org/gocept/gocept.selenium/raw/tip/CHANGES.txt

buildout configuration

gocept.selenium integrates with quite a lot of different testing approaches and
needs to work across a wide spectrum of software versions, e. g. Zope2 before
and after eggification (2.10/2.12), ZTK-KGS, Grok-KGS, Plone3, Plone4 etc.

This has two consequences, one is that we use different extras_require for the
different flavours, so clients will need to specify that, e. g.
gocept.selenium[ztk] or gocept.selenium[grok].

The second is that there is no single buildout configuration for this package,
but rather quite a lot of them, so we are able to run our tests against all the
different software versions we integrate with.

The base package itself is tested with selenium.cfg, this has no further
dependencies except the selenium package. The various flavours have their
own cfg file, in some cases in several versions (e.g. Plone3/Plone4, Zope2
pre/post eggs etc.). This means that in order to set up the buildout, you’ll
need to specify the configuration you want to test, like this:

$ python bootstrap.py -c ztk.cfg
$ bin/buildout -c ztk.cfg

Note that the zope210 and plone3 configurations require Python-2.4, while the
others should work at least up to Python-2.6.

 Copyright 2011, Zope Foundation and Contributors.
 Sphinx-Theme adapted from
 Jinja
.

 Navigation

 	
 index

 	
 previous |

 	gocept.selenium 1.0 documentation

Changelog

1.1.2 (2012-12-21)

	Fix: Initialise the WSGI layer in the correct order to actually allow the
configured WSGI app to be remembered.

	Fix: updated some imports after the extraction of gocept.httpserverlayer.

1.1.1 (2012-12-19)

	Update StaticFilesLayer to the new httpserverlayer API.

1.1 (2012-12-19)

	Extract HTTP server integration into separate package, gocept.httpserverlayer

1.0 (2012-11-03)

	Marking the API as stable.

0.17 (2012-11-01)

	Added gocept.selenium.skipUnlessBrowser decorator to skip tests unless
ceratins browser requirements are met.

	Fix: The static test server did not shutdown in some situations.

0.16 (2012-10-10)

	Fixed selenese popup tests.

	Open a random port for the server process by default: When the environment
variable GOCEPT_SELENIUM_APP_PORT is not set, a random free port is bound.
This allows parallel testing, for instance (#11323).

0.15 (2012-09-14)

	WSGI-Layer is comptabile with Python 2.5.

	Encoding support in converthtmltests
(Patch by Tom Gross <tom@toms-projekte.de>).

	XHTML support for selenium tables
(Patch by Tom Gross <tom@toms-projekte.de>).

0.14 (2012-06-06)

	API expansion: Added assertCssCount. Thus requiring selenium [http://pypi.python.org/pypi/selenium] >= 2.0.

	Added Trove classifiers to package metadata.

	Moved code to Mercurial.

0.13.2 (2012-03-15)

	Fixed WSGI flavor: There was a RuntimeError in tear down if the WSGI
server was shut down correctly.

0.13.1 (2012-03-15)

	Updated URL of bug tracker.

	script extra no longer requires elementtree on Python >= 2.5.

0.13 (2012-01-30)

	Added a selenese assert type ‘list’ and added it to the window management
query methods.

	API expansion: added openWindow.

	API change: filter the result of getAllWindowNames to ignore ‘null’.

	backwards-compatible API change: selectWindow now selects the main
window also when passed the window id None or no argument at all.

	pinned compatible ZTK version to 1.0.1, grok version to 1.2.1, generally
pinned all software packages used to consistent versions for this package’s
own testing

0.12 (2011-11-29)

	API expansion: added getAllWindow* and selectWindow.

0.11 (2011-09-15)

	Added some notes how to test a Zope 2 WSGI application.

	Described how to test a Zope 2/Plone application if using plone.testing
to set up test layers.

0.10.1 (2011-02-02)

	Improvements on the README.

	Wrote a quick start section for packages using ZTK but using
zope.app.wsgi.testlayer instead of zope.app.testing.

	Allowed to use regexp as pattern prefix for regular expressions
additionally to regex to be compatible with the docstring and the
Selenium documentation.

0.10 (2011-01-18)

	Script that generates python tests from Selenium HTML tables.
Reused from KSS project, courtesy of Jeroen Vloothuis, original author.

	Using a URL of Selenium RC in README where version 1.0.3 can be
downloaded (instead of 1.0.1) which works fine with Firefox on Mac OS X,
too.

0.9 (2010-12-28)

	Provide integration with the recent testlayer approach
(zope.app.appsetup/zope.app.wsgi) used by Grok (#8260).

	Provide integration with plone.testing

	Make browser and RC server configurable (#6484).

	Show current test case in command log (#7876).

	Raise readable error when connection to RC server fails (#6489).

	Quit browser when the testrunner terminates (#6485).

0.8 (2010-10-22)

	Fixed tests for the StaticFilesLayer to pass with Python 2.4 through 2.7.

	API expansion: getSelectOptions

0.7 (2010-08-16)

	API expansion: getElementHeight|Width, getCookie* and a few others.

	lots of action methods (mouse* among others)

0.6 (2010-08-09)

	assertXpathCount now also takes ints (#7681).

	API expansion: add isChecked to verify checkboxes, runScript,
clickAt, getLocation, getSelectedValue, getSelectedIndex.

	The pause method uses float division now. Pauses where implicitly rounded
to full seconds before when an int was passed.

	The name of the factored test layer contains the module of the bases now. The
name is used by zope.testrunner distinguish layers. Before this fix selenium
layers factored from base layers with the same names but in different modules
would be considered equal by zope.testrunner.

	The factored ZTK layer cleanly shuts down the http server in tearDown now.
This allows to run different selenium layers in one go.

0.5 (2010-08-03)

	Add a static files test layer for running selenium tests against a set
of static (HTML) files.

	Patterns now also work with multiline strings,
i. e. ‘foo*’ will match ‘foonbar’ (#7790).

0.4.2 (2010-05-20)

	API expansion: *keyDown, *keyUp, keyPress.

0.4.1 (2010-04-01)

	API expansion: added getSelectedLabel.

	Ignore the code of a server’s response when calling open. The default
behaviour of SeleniumRC changed between 1.0.1 and 1.0.2 but we want the old
behaviour by default.

0.4 (2010-03-30)

	API expansion: add getLocation to retrieve currently loaded URL in
browser.

	API expansion: added waitForPopUp, selectPopUp, deselectPopUp
and close.

	API expansion: added verifyAlertPresent, verifyAlertNotPresent and
waitForAlertPresent.

	Usability: raise a better readable exception when an unimplemented selenese
method is called.

	Usability: raise failure exceptions that convey the name of the failed
assertion in spite of some lambdas wrapped around it.

0.3 (2010-01-12)

	Extracted ‘host’ and ‘port’ as class attributes of gocept.selenium.ztk.Layer
so subclasses can override them; stopped hardcoding 8087 as the server port.

0.2.1 (2009-12-18)

	Fix incomplete sdist release on PyPI.

0.2 (2009-12-18)

	Make Zope 2 test server reachable from the outside.

	Implemented getTitle/assertTitle/waitForTitle/etc.

0.1 (2009-11-08)

	first release

 Copyright 2011, Zope Foundation and Contributors.
 Sphinx-Theme adapted from
 Jinja
.

 Navigation

 	
 index

 	gocept.selenium 1.0 documentation

Index

 Copyright 2011, Zope Foundation and Contributors.
 Sphinx-Theme adapted from
 Jinja
.

 _static/monitor.png

_static/minus.png

_static/up.png

_static/plus.png

_static/down-pressed.png

_static/file.png

_static/down.png

_static/comment-close.png

_static/comment-bright.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		gocept.selenium 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Zope Foundation and Contributors.
 Sphinx-Theme adapted from
 Jinja
.

_static/up-pressed.png

_static/comment.png

